Archive for April 2008

Way to go Europe

April 23, 2008

Europe seems to be intent on “carbonizing” us back to the stone age along with India, China and the US. I used to think the Germans were pretty green, but:

Enel and many other electricity companies say they have little choice but to build coal plants to replace aging infrastructure, particularly in countries like Italy and Germany that have banned the building of nuclear power plants. Fuel costs have risen 151 percent since 1996, and Italians pay the highest electricity costs in Europe.

So they don’t mind accelerating climate change and shooting themselves in the foot for paying higher prices for electricity. Seriously, is anyone thinking rationally anymore? Also, why is the father of climate change James Hansen repeatedly giving us silence on nuclear? At this rate, he is going to become known as the man who knows all the problems but not one solution.

Magic without Magic: John Archibald Wheeler (1911-2008)

April 17, 2008


Image copyright: NNDB

When I heard from a friend about John Wheeler’s death this morning, I grimaced and almost loudly let out an exclamation of pain and sadness. That’s because not only was Wheeler one of the most distinguished physicists of the century but with his demise, the golden era of physics- that which gave us relativity, quantum theory and the atomic age- finally passes into history. The one consolation is that he lived a long and satisfying life, passing away at the ripe age of 96 and working almost till his last day. It was just a few weeks ago that I asked a cousin of mine who did his PhD. at the University of Texas at Austin whether he ever ran into Wheeler there. My cousin who himself is in his fifties said that Wheeler arrived just as he was finishing- after retirement from Princeton university, where he maintained an office right until 2006.

Wheeler was the last survivor of that heroic age that changed the world and he worked with some true prima donnas. He was an unusually imaginative physicist who made excursions into exotic realms; particles traveling backwards in time, black holes, time travel. A list of his collaborators and friends includes the scientific superstars of the century- Niels Bohr, Albert Einstein, Enrico Fermi, Edward Teller and Richard Feynman to name a few. To the interested lay public, he would be best known as Richard Feynman’s PhD. advisor at Princeton.

Wheeler is famous for many things- mentor to brilliant students, originator of outrageous ideas, coiner of the phrase “black hole”, outstanding teacher and writer. My most enduring memory about him is from John Gribbin’s biography of Feynman. Gribbin recounts how Wheeler in his pinstriped suits used to look like a conservative banker, a look that belied one of the most creative scientific minds of his time. The fond incident is about the playful rogue Feynman being summoned into Wheeler’s office for the first time. In order to underscore the importance of his time, Wheeler laid out an expensive pocket watch in front of Feynman. Feynman who had a congenital aversion to perceived or real pomposity took note of this and during their next meeting, laid out a dirt-cheap watch on the table. After a moment of stunned silence, both professor and student burst into loud laughter, laughter that almost always accentuated their discussions on physics and life thereafter. Feynman and Wheeler together derived a novel approach to quantum mechanics that involved particles radiating backwards in time. Wheeler also initiated the discussion of the notorious sprinkler problem described by Feynman in Surely you’re joking Mr. Feynman

John Wheeler was born in Florida to strong-willed and working class parents. After obtaining his PhD. from Johns Hopkins at the age of 21, he joined Princeton in 1938 where he remained all his working life. Princeton in 1938 was a mecca of physics, largely because of the Institute for Advanced Study nearby which housed luminaries like Einstein, John von Neumann and Kurt Godel. Wheeler knew Einstein well and later sometimes used to hold seminars with his students in Einstein’s home. As was customary for many during those times, Wheeler also studied with Niels Bohr at his famous institute in Copenhagen. In 1939 Bohr and Wheeler made a lasting contribution to physics- the liquid drop model of nuclear fission. According to this, the nucleus of especially heavy atoms behaves like a liquid drop, with opposing electrostatic repulsive forces and attractive surface tension and strong forces. Shoot an appropriately energetic neutron into an unstable uranium nucleus and it wobbles sufficiently for the repulsive forces to become dominant, causing it to split. The liquid drop model explained fission discovered earlier. The mathematics was surprisingly simple yet remarkably accurate. Bohr was one of Wheeler’s most important mentors; in his biography he describes how he used to have marathon sessions with Bohr, with the great man often insisting on walking around the department, tossing choice tidbits to Wheeler ambling at his side. Caught up in the recent heated debate about the philosophical implications of quantum theory, Wheeler argued the nature of reality with both Einstein and Bohr.

When World War 2 began, Wheeler like many physicists was recruited into the Manhattan Project. Because of his wide-ranging intellect and versatility, he was put in charge as scientific consultant to Du Pont, who was building plutonium producing reactors at Hanford in Washington state. There Wheeler tackled and solved an unexpected and very serious problem. As the reactors were transforming uranium 238 into the precious plutonium, the process suddenly shut down. After some time it started up again. Nobody knew what was happening. Wheeler who was the resident expert worked out the strange phenomenon in an all-night session. What was happening was that some of the fission products produced had a big appetite for neutrons and were therefore “poisoning” the chain reaction. After some time when these products had decayed to sufficiently low levels, they would stop eating up the neutrons and the reactor would start again. This was one of the most valuable pieces of information gained during plutonium production. Ironically, the omission of this information in a second edition of a government history of atomic energy released just after the war alerted the Soviets to its importance. Working on the Manhattan Project was also a poignantly personal experience for Wheeler; the bomb could not save his brother Joe who was killed in action in Italy in 1944. Wheeler later also worked with Edward Teller on the hydrogen bomb, a decision about which he was fairly neutral because he thought it was necessary at the time to stand up to the Soviets.

After the war Wheeler embarked on a lifelong quest in a completely different field and became a pioneer in it- general relativity. He took up where Robert Oppenheimer had left off in 1939. Oppenheimer had made a key contribution to twentieth century physics by first describing what we now know as black holes. Strangely and somewhat characteristically, he lost all interest in the field after the war. But Wheeler took it up and reinitiated a bona fide revolution in the application of general relativity to astrophysics. As his most enduring mark, he coined the word “black hole” in the 1960s. Wheeler became the scientific godfather of a host of other physicists who became pioneers in exploring exotic phenomena- black holes, wormholes, time travel, multiple universes. His most successful student in this regard has been Kip Thorne whose wonderful book expounds on the golden age of relativity. Hugh Everett, the tragic genius who invented multiple universes and the Lagrange multipliers method for optimization problems before plunging into paranoia and depression, left behind choice fodder not just for science but for science fiction; parallel universes have been a staple of our collective imagination ever since then. In retrospect, Wheeler followed his mentor and did for astrophysics what Bohr had done for quantum theory- he served as friend, philosopher and guide for a brilliant new generation of physicists.

Wheeler was also known as an outstanding teacher. His mentoring of Feynman is well-known, and he devoted a lot of time and care to teaching and writing. Along with his students Kip Thorne and Charles Misner, Wheeler produced what is surely the bible of general relativity, Gravitation, a mammoth book running more than a thousand pages whose only discouraging feature may be its length. The book has served as advanced introduction to Einstein and beyond for generations of students. Wheeler also co-authored Spacetime Physics, an introduction to special relativity which even I have timidly managed to savor a little during my college days. His own autobiography, Geons, Black Holes and Quantum Foam: A Life in Physics is worth reading for its evocation of a unique time of the last century, as well as for fond anecdotes about great physicists.

But many people will remember Wheeler as a magician. Sitting in his office in his pinstriped suits, Wheeler’s mind roamed across the universe straddling everything from the smallest to the largest, exploring far-flung concepts and realms of the unknown. He grappled with the interpretation of quantum mechanics and was an early proponent of the anthropic principle- in John L Casti’s magnificent book Paradigms Lost, Casti quotes Wheeler analogizing observer-created reality with the game in which a group of people asks someone else to guess an object they have in mind by asking questions, except that in the modified version of this game, they let the object be created during the process of questioning. With his mentor Bohr’s enduring principle of complementarity as a guide, Wheeler produced esoteric ideas that nonetheless questioned the bedrock of reality. Wheeler was entirely at home with such bizarre yet profound concepts that still tug at the heartstrings of physicist-philosophers. Only Wheeler could have introduced paradoxical and yet meaningful phrases like “mass without mass”. In celebration of his sixtieth birthday, physicists produced a volume dedicated to him with a title that appropriately captured the essence of his thinking- “magic without magic”.

John Wheeler was indeed a magician. He made great contributions to physics, served as its guide for half a century and motivated and taught new generations to wonder at the universe’s complexities as much as he did. He was the last torch-bearer of a remarkable age when mankind transformed the most esoteric and revolutionary investigations into the universe into forces that changed the world. He will be sorely missed.

Large-scale effects of a nuclear war between India and Pakistan

April 10, 2008

Back in the days when the Cold War was simmering, one of the rather depressing activities scientists and other officials used to engage in was to conjure up hypothetical scenarios involving nuclear war between the US and the Soviet Union and try to gauge its effects. Such theorizing was often done behind closed doors in enclaves like the RAND corporation. In the early 1960s, RAND’s Herman Kahn wrote an influential and morbid book called On Thermonuclear War. Kahn, a portly, overweight, brilliant Strangelovian character was said to be a possible inspiration for the good doctor in Kubrick’s brilliant movie Dr. Strangelove. In fact Kubrick supposedly read Kahn’s 600 page book in detail before working on the movie (A recent biography of Kahn sheds light on this fascinating man)

The book ignited a controversy about nuclear conflict because Kahn’s thesis was that nuclear war fought with thermonuclear weapons was survivable, thus possibly upping the ante for the nuclear powers. Kahn used many rather incomplete arguments to make the not entirely unreasonable point that while such a war would be horrific, it would not mean the end of humanity. The survivors may not necessarily envy the dead. But of course Kahn was speculating based on the then best available scientific data along with his own idiosyncratic biases. One of the biggest effects of a nuclear explosion is to send up debris in the atmosphere, and climate models in the 60s were in a primitive stage to help with predicting any such effects. Also, nuclear effects start wide-ranging fires and, in the rare cases where conditions are right, gruesome firestorms. Fires can account for up to 60% of the damage from a nuclear explosion. While the thermal effects constitute about 35% of the total effects from a typical nuclear air-burst (blast effects constitute about 50%), thermal effects can naturally sort of self-perpetuate through starting fires. According to some analysts, state department officials in the 50s calculating nuclear effects neglected the devastation due to fire, which made their results underestimates. Any realistic simulation of a nuclear explosion has to take into account effects due to fires.

The debate about the effects of a global thermonuclear war was galvanized in the 1980s when Carl Sagan and his colleagues proposed the idea of nuclear winter, in which dimming of sunlight because of the debris from nuclear explosions would lower the average temperature at the surface of the earth. Among other effects, this combined with the resulting darkness would devastate crops, thus bringing about long-term starvation and other catastrophes. Since then, scientists have been arguing back and forth about nuclear winter.

What has changed between 1980 and now though is that climate models including general circulation models have vastly improved and computational power to analyze them has exponentially gone up. Although we still cannot predict long-term climate, we now have a reasonably good handle on quantifying the various forcings and factors that affect climate. Thus for the last few years it has seemed worthwhile to predict the effect of nuclear war on our climate. Now scientists working at the University of Colorado and NOAA have come up with a rather disconcerting study in the Proceedings of the National Academy of Sciences indicating the effects of a regional nuclear war on global climate. A typical scenario is a war with 50 warheads of 15 kilotons each (about the yield of the Hiroshima bomb) between India and Pakistan, a conservative estimate. There have been a few such studies published earlier but this one looks at the effects on the ozone layer, the delicate veneer that protects life from UV radiation.

The researchers’ main argument is that there is a tremendous mass of soot that is kicked up tens of kilometers into the atmosphere during a nuclear explosion. The study seems to be carefully done, taking into account various factors acting to both reinforce and oppose the effects of this soot. The number they cite for the amount is about 5Tg (teragrams, a teragram being 10^12 grams) which is a huge number. They account for local fallout of the soot through rain as being about 20%. What happens to the remaining 4Tg is the main topic of investigation. According to the model, this enormous plume of soot is intensely heated by sunlight. By this time it has entered the upper layer of the troposphere and snakes up into the lower stratosphere where the ozone layer is situated, it is radiating heat that disrupts the delicate balance of chemical reactions that produce and get rid of ozone, reactions that have now been well-studied for decades. These involve the interaction of radical species of oxygen, nitrogen and halogens with ozone that sap the precious molecule away. The bottom line is that this heat from the hot soot vastly increases the rate of reactions that produce these species and eat up the ozone at that altitude, thus depleting the layer. The soot lingers around since removal mechanisms are slow at that height. The heat also encourages the formation of water vapour and its consequent break up and reaction with ozone, thus further contributing to the breakdown. The researchers also include circulation of water vapour and other gases in the global atmosphere, and how this circulation will be affected by the heat and the flow. Nitrogen oxides generated by natural and human processes have already been shown to deplete ozone, and the heated soot will also intensify the rate of these processes.

The frightening thing about the study is the magnitude of the predicted ozone loss due to these accelerated processes; about 20% globally, 40% at mid latitudes and up to 70% at high latitudes. Also, these losses would last for at least five years or so after the war. These are horrifying numbers. The ozone layer has evolved in a synergistic manner over hundreds of millions of years to wrap up life in a protective blanket and keep it safe. What would the loss of 40% of the ozone layer entail? The steep decline would allow low wavelength UV radiation which is currently almost completely blocked out to penetrate the biosphere. This deadly UV radiation would have large-scale devastating effects including rapid increases in cancer and perhaps irreversible changes in ecosystems, especially aquatic ones. The DNA effects documented by the researchers are appalling- up to 213% increases in DNA damage with respect to normal levels, with plant damage up to 132%. In addition, the increased UV light would hasten the normal decomposition of organic material, further contributing to the natural balance of the biosphere. The phenomenon would indeed be a global phenomenon. Decomposition of the soot is thought to be negligible.

Now I am no atmospheric scientist, but even if we assume that some of these estimates end up a little exaggerated, it still seems to me that effects on the ozone layer could be pretty serious. If I had to guess, I would think that there could be uncertainty in estimating how much soot is produced, how much goes up and to what altitude, and how long it stays there. What seems more certain are the effects on the well-studied radical reactions that deplete ozone. Some elementary facts seem to reinforce this in my mind- carbon has a very high sublimation point and can get heated up to high temperatures, the energy radiated by a hot body goes as the fourth power of the temperature, and from college chemistry I do remember the rule of thumb that on an average, the rate of a reaction doubles with a 10 degrees centigrade temperature rise. The estimates of rate increases made by the authors seem reasonable to me.

What is most disconcerting about the study is that it involves a rather “small” nuclear exchange that takes place in a localized part of a continent, and yet whose effects can affect the entire world. “Globalization” acquires a new and portentous meaning in this context. India and Pakistan can both easily field 50 weapons each of 15 kilotons yield, if not now, in the near future. In addition to this global-scale devastation of the ozone layer, it would be unthinkable to imagine the more than 10 million people dying in such a conflict, as well as total devastation of public systems and the food supply. Herman Kahn might have thought that nuclear war is “survivable”. Well, maybe not exactly…

Reference and abstract for those who are interested:
Mills, M.J., Toon, O.B., Turco, R.P., Kinnison, D.E., Garcia, R.R. (2008). Massive global ozone loss predicted following regional nuclear conflict. Proceedings of the National Academy of Sciences, 105(14), 5307-5312. DOI: 10.1073/pnas.0710058105

“We use a chemistry-climate model and new estimates of smoke produced by fires in contemporary cities to calculate the impact on stratospheric ozone of a regional nuclear war between developing nuclear states involving 100 Hiroshima-size bombs exploded in cities in the northern subtropics. We find column ozone losses in excess of 20% globally, 25–45% at midlatitudes, and 50–70% at northern high latitudes persisting for 5 years, with substantial losses continuing for 5 additional years. Column ozone amounts remain near or <220 Dobson units at all latitudes even after three years, constituting an extratropical “ozone hole.” The resulting increases in UV radiation could impact the biota significantly, including serious consequences for human health. The primary cause for the dramatic and persistent ozone depletion is heating of the stratosphere by smoke, which strongly absorbs solar radiation. The smoke-laden air rises to the upper stratosphere, where removal mechanisms are slow, so that much of the stratosphere is ultimately heated by the localized smoke injections. Higher stratospheric temperatures accelerate catalytic reaction cycles, particularly those of odd-nitrogen, which destroy ozone. In addition, the strong convection created by rising smoke plumes alters the stratospheric circulation, redistributing ozone and the sources of ozone-depleting gases, including N2O and chlorofluorocarbons. The ozone losses predicted here are significantly greater than previous “nuclear winter/UV spring” calculations, which did not adequately represent stratospheric plume rise. Our results point to previously unrecognized mechanisms for stratospheric ozone depletion.

Profile of a fiend

April 8, 2008

Plutonium: A History of the World’s Most Dangerous Element– Jeremy Bernstein
Joseph Henry Press, 2007

The making of the atomic bomb was one of the biggest scientific projects in history. Some of the brightest minds of the world worked against exceedingly demanding deadlines to produce a nuclear weapon in record time. To do this, every kind of problem imaginable in physics, chemistry, metallurgy, ordnance and engineering had to be surmounted. Many of the problems had never been encountered before and challenged the ingenuity and perseverance of even the best of the brightest.

To accomplish this feat, human, material and monetary resources were poured in on a scale unsurpassed till then. Factories were constructed at Oak Ridge, Los Alamos and Hanford that were bigger than anything built until then. The resources required were staggering; at one point the Manhattan Project was using 70% of the silver produced in the United States. Steel production in the entire nation had to be ramped up to fulfill the needs of the secret laboratories. Extra electricity on a national scale had to be generated to power the hungry reactors and electromagnetic separators. The factories at Oak Ridge were giant structures; one of them was a whole mile under one roof. The gargantuan factories and the resulting employment increased the population of the small town from 3000 to about 75,000. At the end of the war, hundreds of thousands of people and an estimated 2 billion 1945 dollars had been spent on the biggest technical project in history. The entire country had had to be mobilized for it. In just three years, the scale of the project was consuming about as many resources as the US automobile industry, an astonishing achievement. Only the United States could have done something like that at the time.

Of all the myriad and complex problems involved in the project, two stand out for their formidable complexity and difficulty. One was the separation of uranium-235 from its much more abundant cousin uranium-238. The differences between the masses of the two isotopes is so small that at the beginning, nobody believed that it could be done. Indeed, the atomic bomb effort in Germany largely stalled because its leaders could not think of any way this could be done in any reasonable time. An entire town had to be constructed at Oak Ridge to surmount this problem. Even today this is probably the single-hardest problem for anyone wanting to construct an atomic bomb from scratch.

However, the uranium separation problem was at least anticipated at the very beginning. Compared to this, the second problem was completely unexpected. It involved a material from hell that nobody had seen before. This material was highly unstable and difficult to work with, intensely radioactive, and its discovery was one of the most closely-kept secrets of all time. The material would play a decisive role in the project and in the nuclear arms race that was to ensue. Today, its shadow looms large over the world. This material is plutonium.

Now in a succinct and readable book, well-known physicist and historian of science Jeremy Bernstein tracks the history of a diabolical fiend. Bernstein has earlier written biographies of Oppenheimer and Hans Bethe and a recent book on nuclear weapons. He is an accomplished veteran physicist who has known some of the big names in physics of the century, Oppenheimer and Bethe included. Bernstein is a fine writer who recounts many interesting anecdotes and bits of trivia. But he does have one annoying habit; his constant tendency to digress from the matter under consideration. He could be talking about one event and then suddenly digress into a four page life history of a person involved in that event. One gets the feeling that Bernstein wants to put his opinion of every small and sundry event from the life of every scientist he has met or heard of on record. At times, the connections he unravels are rather tenuous and long-winded. Readers could be forgiven for finding Bernstein’s digressions too many in number. But at the same time, those interested in the history of physics and atomic energy will be rewarded if they persevere; most of Bernstein’s forays, though exasperating, are also quite interesting. In this particular case, they weave a complex story around a singular element.

Plutonium was discovered by the chemist Glenn Seaborg and his associates at Berkeley in 1940. In a breathtakingly productive career, Seaborg would go on to discover nine more transuranic elements, advise four US presidents, win the Nobel prize, win enough other awards and honors to have an entry in the Guinness Book, and have an element and asteroid named after him while still alive. After fission was discovered, it was hypothesized that elements with atomic numbers 93 and 94 might also behave like uranium. In 1939 Seaborg was a young scientist working at Berkeley when he heard about the discovery of fission. In the next year he performed many experiments on fission at Chicago and Berkeley. In 1940, another future Nobel laureate named Edwin McMillan discovered a radioactive element past uranium with a postdoc, Philip Abelson. In logical sequence they named it neptunium. Abelson and McMillan’s June 1940 paper on neptunium was the last paper to come out of the United States on fission and related issues; the need for secrecy in such matters had already been realised by senior scientists. There matters stood until December 1941- a decisive time due to Pearl Harbor- when Seaborg, McMillan and their associates Joseph Kennedy and Arthur Wahl discovered element 94 by using tedious and clever chemical techniques. After uranium and neptunium, Seaborg decided to name the new element after Pluto- the god of fertility but also the god of the underworld.

Concomitantly with the American effort, the Germans were also trying to understand the properties of plutonium and Bernstein devotes a chapter to their efforts and background. A resourceful German physicist named Carl Friedrich von Weiszacker had observantly noticed the dwindling and disappearance of papers from the United States after the paper by McMillan and Abelson appeared in mid 1940. He also realised the advantage of using plutonium in a nuclear weapon. But as the history of the German atomic project makes clear, Weiszacker’s report was not taken too seriously, and in any case the Germans were too cash and resources-strapped to seriously pursue the production of plutonium. Notice was also taken by accomplished physicists in the Soviet Union but it was espionage that provided them with information about the real potential and importance of plutonium. The fascinating story of Soviet espionage is superbly narrated in Richard Rhodes’s Dark Sun: The Making of the Hydrogen Bomb.

Plutonium was soon isolated in gram quantities by Seaborg’s team and its enhanced fissile properties were investigated. After the enormous problems with separating U-235 were realised, the great advantage of plutonium became obvious; plutonium being a different element, it would be relatively easy to separate from its parent uranium, thus avoiding the difficulty of isotope separation. After plutonium was discovered, it was found that it is even more prone to fission than uranium. Compounded with its relative ease of separation, this property of plutonium made it a key material for a nuclear weapon. It was also realised however that many tons of uranium would have to be bombarded with neutrons to produce pounds of the precious element. By 1942, it was known that at least a few kilograms of both uranium and plutonium would be needed for the critical mass of a bomb. To this end enormous factories were constructed at Oak Ridge (for enriching uranium) and reactors at Hanford in Washington state (for producing plutonium) in 1943. The reactors at Hanford would keep on producing the material for thousands of nuclear warheads until the late 1980s. A secret lab at Los Alamos was concurrently established, headed by Robert Oppenheimer. He would bring a group of “luminaries” to the mesa high up in the mountains for working on the actual design of an atomic weapon.

At Los Alamos, initial designs of bombs with both uranium and plutonium involved the “gun method” wherein a plug of fissile material would be shot down at great speed along a large gun barrel into another mould of fissile material. When the two met a critical mass would suddenly materialize and fission would result in an explosive detonation. However, a fatal flaw was unexpectedly encountered in 1944. When the first few grams of plutonium arrived at Los Alamos from Hanford, it was observed that Pu-239 had a very high rate of “spontaneous” fission due to the copious presence of another isotope, Pu-240. Even today, the feature that distinguishes “reactor-grade” plutonium from “weapons-grade” plutonium is the higher presence of Pu-240 in reactor-grade material. Because of the presence of extra neutrons from spontaneous fission, a gun type bomb though it would work for U-235 would be worthless for Pu-239 since by the time the two pieces met, fission would have already started and the result would be a “fizzle”, a suboptimal explosion. Because of this difficulty the whole lab was reorganised by Oppenheimer in August 1944 and experts were brought in to investigate new mechanisms for a plutonium bomb.

The result was one of the most ingenious concepts in nuclear weapons history and design- implosion. The idea was to suddenly squeeze a sub-critical ball of plutonium using high explosives into a highly compressed supercritical mass, causing fission and a massive explosion. The problem was that this microsecond compression had to be perfectly symmetrical, otherwise the Pu-239 would simply squirt out along the path of least resistance like dough squeezed within the cupped palms of our hands. To circumvent this problem would require the capabilities of some of the greatest scientists of the day. The Hungarian genius John von Neumann supplied the crucial idea of using “lenses” of explosives of differing densities to direct shock waves that would symmetrically converge onto a point, just like light through glass lenses. The concept required a paradigm shift- nobody had used explosives before as precision tools; they were generally used to blow things out, not in. Even after the idea was floated, the engineering and diagnostics obstacles were formidable. Chemist George Kistiakowsky from Harvard was put in charge of a division that would painstakingly develop the moulds for the lenses; machining had to be accurate to within microns as any air bubbles, cracks or irregularities would immediately impede the symmetrical shock wave. Another challenging device was the “initiator”, a tiny ball of radioactive elements in the center of the sphere that would release neutrons right after the implosion, but not a moment before. Its design was so challenging that it is one of the few things that’s still almost completely classified. One of the physicists who worked on both shock wave hydrodynamics and on initiator design was Soviet spy Klaus Fuchs. He was ironically brought in as part of a British team to replace Edward Teller, whose reluctance to pursue implosion and obsession with hydrogen bombs tested the patience of theoretical division leader Hans Bethe. Information obtained by Fuchs would prove invaluable to the Russians in building their own implosion bomb.

Compounding all of these difficulties was the hideously diabolical nature of Pu-239 itself. Chemists and metallurgists had never faced the challenge before of working with such an unusual and dangerous material. Pu-239 exists as several allotropes, different physical forms of the same element, depending upon the conditions. When one investigates the use of plutonium in a bomb and then looks at its allotropic behavior, it’s almost as if nature had conspired to keep humans from using it. The reason is that at room temperature, Pu-239 exists as an allotrope named the alpha phase allotrope. The problem with this is that while it is dense, it is brittle and won’t do at all for an implosion. On the other hand the allotrope of Pu-239 that is suitable for a bomb, the delta phase, exists only at 315 degrees centigrade and above. This is a catch-22 situation; the useful and machinable allotrope exists only at high temperatures while the one at room temperature is worthless. A very clever solution to this was discovered by human ingenuity; Cyril Smith, head of the metallurgy division at Los Alamos found that adding a small amount of the metal gallium to Pu-239 stabilized the valuable delta phase at room temperature. This was found only a few months before the first test of the bomb.

In the end, while the uranium bomb was reliable enough to not require testing, the implosion bomb was too novel to use without testing. On July 16, 1945, the sky thundered and a new force surpassing human ability to contain it was unleashed in the cold desert sands of New Mexico at the Trinity test site. Plutonium tested on that ominous dawn would reincarnate into Fat Man, the bomb that leveled Nagasaki in less than ten seconds.

In addition to Pu-239’s unusual chemistry, there were of course its radioactive properties that make its name so dreaded for laypersons. But we have to put things in perspective. I would easily be within a kilometer of Pu-239 than within a kilometer of anthrax or VX nerve gas. Plutonium decays by emitting alpha particles and simple laws of physics dictate that these particles have a very short range. You could hold Pu on a sheet of paper in the palm of your hand and live to talk about it. The real danger from Pu-239 comes from inhaling it; it can cause severe damage to lungs and bone and cause cancer. Its half-life is 24,000 years and another law of physics dictates that half-life and radioactive intensity are inversely related. To help understand Pu-239’s true nature, Bernstein narrates a fascinating study of 37 technicians and scientists at Los Alamos who ended up getting Pu-239 into their system. This group was whimsically named the “UPPU” (U Pee Pu) group as Pu-239 could be detected in their urine. The group was tested periodically at Los Alamos for many years. The verdict is clear; none of these people suffered long-term damage from Pu-239. Many of them lived long and healthy lives and some of them are still alive. As with other aspects of nuclear power, the danger from plutonium has to be carefully reasoned and objectively assessed. As with other nuclear material, Pu needs to be handled with the utmost care, but that does not mean that fears about it should outweigh benefits that one could get from its potential for providing power. There is naturally a real proliferation danger with plutonium, but even there, risks are often inflated. Terrorists will have to steal a substantial amount of Pu using special equipment from facilities which are usually heavily guarded. Stealing Pu and using it is not as easy as robbing a bank and laundering the money.

However, there are sites in the former Soviet Union where plutonium is not that heavily guarded and these will have to be secured. 5 kilograms of Pu-239 if efficiently utilised can be used for a weapon that will easily destroy Manhattan. It is very difficult to keep track of such small quantities through inspection. International collaboration will be necessary to keep track of and contain every gram of plutonium at vulnerable facilities. At the same time, power-generating plutonium is indispensable for the future of humanity. Forged on earth by human brilliance, Pu outlived its initial use. Most of the warheads in the US arsenal including thermonuclear warheads use plutonium for the fission assembly. Several hundred tons of both weapons-grade and reactor-grade plutonium have been produced and are being produced. Hundreds more sit in fuel rods immersed in huge water pools, glowing eerily with a bluish light. Plutonium production sites in the United States are facing a heavy and expensive backlog of cleanups.

Plutonium seems to be a classic case of the “careful what you wish for” adage. Glenn Seaborg would not have imagined the consequences of his discovery that hazy morning in December 1941, when after an all-night session the angry element revealed itself to a warring world, kicking and screaming from its fiery radioactive cradle. But as Richard Feynman once so lucidly put it, science is a set of keys that open the gates to heaven. The same keys open the gates to hell. Plutonium constitutes one of the keys to heaven that’s given to us. Which gate to approach is entirely our choice.

Response to Adityanjee: Arms race in space

April 4, 2008

My past post on outer-space arms conflict has been published as a letter in the latest issue of the magazine Pragati. In that post I had commented on a piece by Adityanjee in the previous issue of Pragati that encouraged development of ASAT (Anti-Satellite) capabilities by India. Mr Adityanjee responds to the letter and hence to my post in the same issue of Pragati by saying:

“Nuclear Dreams presents some cogent arguments for early successful negotiations for preventing an arms race in space. This is indeed a laudable goal for all the space-faring nations. However, of the six space-faring nations (US, Russia, China, Japan, European space agency and India) currently, three nations (the US, Russia and China) already have demonstrated ASAT capabilities. In reality the race has already started. Nuclear Dream’s arguments do not consider India’s strategic interests. States negotiate international treaties not from an altruistic point of view but to further their interests. In fact, Nuclear Dreams contradicts himself when he justifies a space weapons ban so as to permanently freeze US superiority in space-warfare capabilities. A space weapons ban might arguably be in US interests—and analysts such as Ashley Tellis argue that it is not—but India should avoid being cast out of the league of ‘legitimate’ space powers”

Since I am a little short on time this week, let me respond briefly to some of Mr Adityanjee’s objections. I will try to pen a detailed response later.

Mr Adityanjee says that I contradict myself when I justify a space weapons ban so as to permanently freeze US superiority in space. I don’t think I do. First of all, the US has had superiority in space technology and assets for a very long time now. And even if a ban freezes US space superiority, so what? The question is whether that superiority will endanger India’s strategic interests, something which Mr Adityanjee thinks I am not considering. For answering these questions, we have to also look at US interests. This is related to Ashley Tellis’s article cited by Mr Adityanjee on how the ASAT ban proposed by China and Russia may not protect US interests as it only applies to space-based ASAT weapons.

What is Tellis’s rationale for this opinion? As I understand it, he says that because the ban will not cover land or sea-launched ASAT weaponry, it would not be in the best interests of the US since it will leave the way open for other nations to develop such weaponry. But there is a second explanation which I don’t find improbable; the US opposes the space-weapons ban because it wants to leave open the possibility of developing space weapons itself in the future. This is not inconceivable, given the long history of US attempts to try to design and implement space-based weapons; Reagan’s Star Wars being the most famous example of this. In fact it’s instructive to remember that Star Wars was supposed to defend against ballistic missiles, an idea that the US is clearly still wedded to, given its recent developments in missile defense. The Bush administration might be as or more concerned about not being able to develop space-based ASAT weapons in the future as it is about other countries developing land-based ASAT weapons. Simply put, the ban is really not against US interests, but against those of the Bush administration. While the distinction is unfortunately inconsequential right now, there is a fair chance that the next President might find it compelling. As Mr Adityanjee rightly says, it is a truism that every country thinks about its own strategic interests. In reality, the US opposing the ban is actually contrary to its strategic interests. This is because any space-weapons or ASAT race might harm the US more than it harms other countries, since the US has the most number and the costliest of assets in space. Plus, space-based weapons have already shown to provide little if any defense against ballistic missiles. On the other hand, ASAT capabilities in space would be a good disguise for other countries to develop more ICBMs in the first place. In consequence, as was paradoxically the case in the early days of the Cold War (an opportunity the US lost), the US superiority in space weaponry and its strategic space interests would be best maintained by convincing other nations that this space capability would never be used. India does not need to fear a superiority that would not be functional.

Thus in my opinion, the US opposition to the ban while not entirely unwarranted, is more a product of traditional Bush administration policies than of cogent thinking about US strategic interests. Sadly, this is a further example of the administration’s misguided policies which are supposed to protect US national security, but which possibly might harm it in the long-term; recall that the administration has already withdrawn from the ABM treaty which actually makes its inertia to space-weapons bans more understandable.

Coming back to India’s strategic interests, I think it is fair to say that a country’s strategic interests should be a subset of its long-term and large-scale national security interests. These national security interests involve many peacetime activities which strengthen a country’s resources and manpower. Given the above situation, India’s strategic interests would be to do its best to prevent a space-weapons race, for basically the same reasons as it would be in US interests to do this. India more than many other nations has both the need and fortunately the capability to put satellites in space for vital purposes such as precipitation measurement and surveillance. Certainly the second objective and I dare say the first one is important for India’s long-term national security. In fact, of one thing we can be sure; any ambitious country- and ASAT-capable China and Russia would count in the forefront- would greatly value the benefits accrued from harnessing the power of satellites in space. It is in no developing country’s interests to render space hostile for its satellites. But if India aggressively pushes ASAT development, it may put off China and Russia from trying to advocate bans on such developments. The result most probably will be a space arms race with both space-based weapons and land-based weapons, clearly jeopardizing India’s further progress and interests.

The question naturally asked in this context is; shouldn’t India build up insurance against a possible shoot-down of an Indian satellite by the US or China or Russia. This is what I call the problem with planning for worst-case scenarios. Let me digress a bit. One worst-case scenario for India would be for Pakistan to carpet the country with nuclear weapons. What would be the best planning to forestall such a scenario? Defense would not do, because no amount of defense would be sufficient against a full-scale nuclear attack. In such a case, the logical conclusion is that only a full-scale preemptive nuclear attack on Pakistan would be the correct response by India to prevent a worst-case scenario. The horror of this situation reveals the absurdity of always thinking in terms of worst-case scenarios. A Churchillian admonition comes to mind- “It is not enough to do our best. Sometimes we must do what’s required”. The questions to ask are; under what realistic circumstances would the US (highly improbable) or China (conceivable but still improbable) shoot down an Indian satellite? How many satellites would need to be shot down? And perhaps the most important question is; is an ASAT capability the only way in which India could counter such an improbable transgression? India already has adequate military resources to threaten China if it wants to. But more importantly in this age of globalization, we again come to the question asked earlier; will it be in China’s interests to do something as eminently stupid as that, when its future depends on the preservation of a delicate strategic and economic balance in Asia and around the world?

Having said all of the above, let me note that I did not say that India should not spend resources on ASAT capabilities at all. But as in any other decision, it has to consider the balance of arguments which inevitably include complex and multi-factorial issues. What I am saying is that for India’s own future strategic interests as well as those of others, it still makes the most sense to try to push for a ban. While India can pursue rudimentary ASAT development on the side, its primary attitude should be conciliatory and advocate an anti-ASAT treaty. In this, it must take the lead and try to include China and Russia on its side. As Adityanjee notes, countries don’t negotiate bans for altruistic purposes. And neither will India.

No end to madness

April 4, 2008

Now it seems that NATO has also jumped onto the bandwagon of missile defense. I have no doubt that considerable weight was thrown around by American officials to achieve this goal. Looks like George Bush is doing an admirable job to cram as many misdeeds as possible in his last few months of tenure.

This surely cannot bode well for US security. No matter how many people write about it and rail against it, America is still living in the Cold War era. I have yet to understand exactly who is going to attack the US with missiles. North Korea? Iran? No matter how much the administration tries to convince the world, both these countries are not suicidal enough to risk annihilation by trying to attack the US or its European allies with such weapons.

In fact they are of course much cleverer than that. Low-level nuclear proliferation and terrorism has always been the most effective way they can damage US interests. If they really wanted to seriously affect US interests- and it’s not a foregone conclusion that they wish to- these countries would help terrorists smuggle in dirty bombs or similar weapons through the still largely unguarded US borders. And in fact the much-dreaded dirty bomb attack, when it comes (and several analysts chillingly think it is only a matter of time), will probably be found to not be connected to any one of these states. Then only will the citizens of this nation realise how George Bush was misleading them for the last seven years under the pretense of false security.

Much is made of how he has kept the country safe since 9/11 and how there’s been no terrorist attack on US soil. Maybe he has. But first of all it is all too easy to forget at what cost this has been achieved; while terrorists have not actually attacked the US since 9/11 many more have been created, forged by interventions in the Middle East and imbibed with hatred of the US, who could attack the country in the future. More importantly, we can be sure of one thing; if even a small nuclear attack occurs in a US city of any significant size in the next decade, the effects will be so horrible and so long-lasting that all the orange alerts and patriot acts of the last seven years will become a footnote to a footnote in American history.

The US continues to intervene and play games abroad and neglect its interests and borders in its own backyard. In spite of this being pointed out by a number of senior analysts, the administration is still making sure it roils the waters in foreign lands by waging invasive wars, spreading “democracy”, and putting missile defense shields against non-existent targets.

As they say, those who forget history will be condemned to relive it…again and again. What have the citizens of this great country done to deserve such a dangerous and gloomy future?